A Model-Agnostic Approach to Quantifying the Informativeness of Explanation Methods for Time Series Classification

Thu Trang Nguyen, Thach Le Nguyen, Georgiana Ifrim

School of Computer Science, University College Dublin, Ireland

Introduction

- Time Series Classification (TSC)
 - Prediction task common in many real-life applications, especially Human Activity

Recognition tasks; often requires **explanation** for the algorithm's prediction

Landing Classes:

- Normal
- Bending
- Stumble

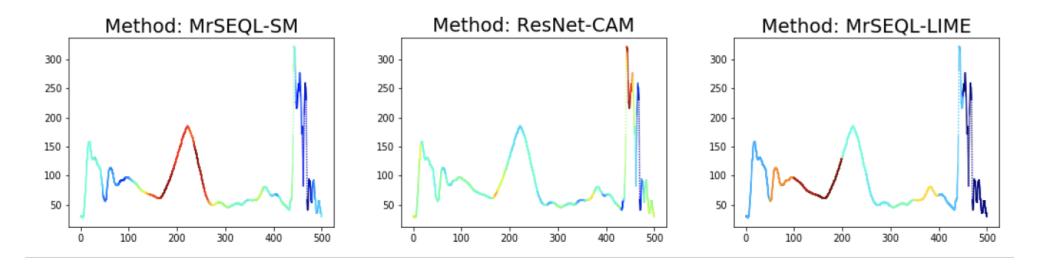


Fig. 1: Saliency map explanations for a motion time series obtained using different explanation methods. In this figure, the most discriminative parts are colored in deep red and the most non-discriminative parts are colored in deep blue.

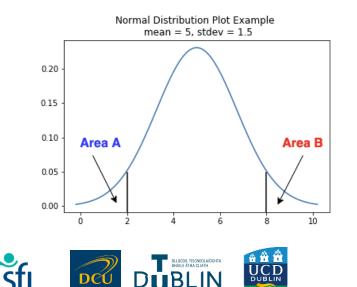
⇒ Challenge: How to assess and objectively compare TSC explanation methods?

Related Work

- We focus on quantitative assessment of explanations for TSC
- We use saliency-based explanations produced by the following methods:
 - MrSEQL-SM: Saliency Map computed from MrSEQL linear classifier weights [2]
 - CAM: Class Activation Map (explaining FCN/ResNet models)
 [3]
 - LIME: Local Interpretable Model-Agnostic Explanations (explaining any models) [1]

- Key Concepts:
 - **Explanation as a Saliency Map**: produced by matching a time series with a vector of weights (explanation) using a heatmap \rightarrow highlight the discriminative parts of the time series
 - **Referee Classifiers**: independent TS classifiers to evaluate the explanation
 - Explanation Informativeness: via explanation-based data perturbation, a more informative explanation can more effectively impact the referee classifiers predictions
- \rightarrow Key idea: If the explanation is informative, knocking-off (perturbing) the discriminative parts of the time series leads to lower accuracy for the referee classifier

- Discriminative vs. Non-discriminative parts of the Time Series
 - Each time series index has a corresponding saliency weight
 - Discriminative/Non-discriminative parts: indices of the TS with weights in the top/bottom k% of the entire weight profile.
 - Example: with k = 20, discriminative parts are the parts of the TS in the top 20% of the weights (index 5 and 6), non-discriminative parts are those that belong in the bottom 20% of the weights (index 1 and 4). The perturbation threshold k varies, eg 0%, 10%, 20%,...,100%.



Index (0-10)	1	2	3	4	5	6	7	8	9	10
Weight (in range [0,100])	9	58	46	15	75	78	57	48	36	17

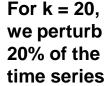
• Explanation-driven Data Perturbation

- **Type1:** noise added to only discriminative parts (with different perturbation level k)
- **Type2:** noise added to only non-discriminative parts (with different perturbation level k)
- Perturbation: adding Gaussian noise to the original signal

 $x_{perturbed} = x + \mathcal{N}(\mu, \sigma^2)$

If a time series is normalized, the distribution for the Gaussian noise would be sampled from $\mathcal{N}(0, \sigma_1)$. The parameter σ_1 controls the magnitude of the noise.

	Index	1	2	3	4	5	6	7	8	9	10
a = 20, erturb of the series	Weight	9	58	46	15	75	78	57	48	36	17
	X	224	420	465	222	257	405	383	439	350	450
	Xperturbed (type1)	224	420	465	222	258	400	383	439	350	450
	X _{perturbed} (type2)	220	420	465	229	257	405	383	439	350	450



Science Foundation Ireland Centre for Research Training in Machine Learning

Quantifying the Informativeness of Explanation Methods

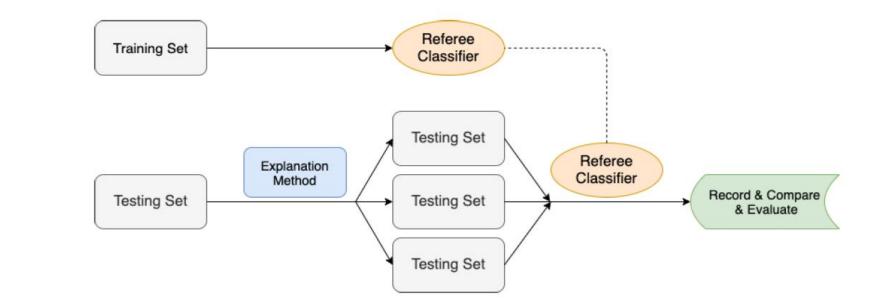
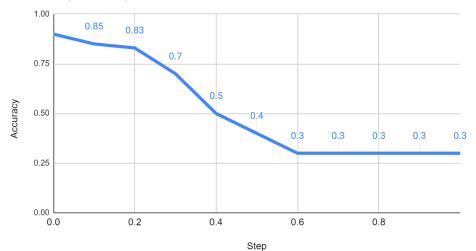


Fig. 4: Process of creating explanation-driven perturbed test sets and evaluating the explanation method using a referee classifier.

Process:

Threshold for discriminative weights	0%	10%	20%	 90%	100%
Classification accuracy by referee classifier	0.90	0.85	0.83	 0.30	0.30

Accuracy vs Step



Science Foundation Ireland Centre for Research Training in Machine Learning

Quantifying the Informativeness of Explanation Methods

• Evaluation Measure

- Measure the impact of the accuracy reduction induced by different explanation methods by estimating the area under the (explanation-driven) accuracy curve
- Method: use trapezoidal rule

k

t

 ACC_i

Proposed Metric: *eLoss*

$$eLoss = \frac{1}{2}k\sum_{i=1}^{t}(acc_{i-1} + acc_i)$$

- value of each step between the 0-1 range
 - number of steps (100/k)

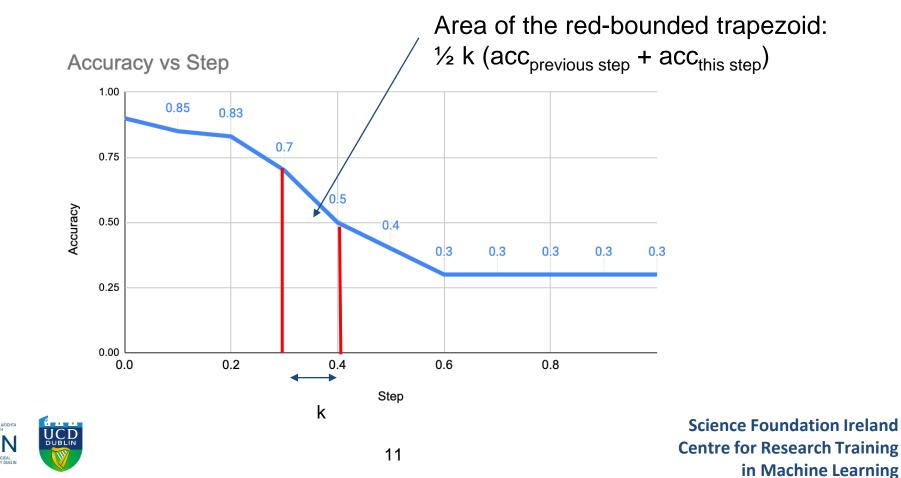
- the accuracy at step i, measured by a referee classifier

Quantifying the Informativeness of Explanation Methods

• Evaluation Measure

DEU

DIBL



• Evaluating Explanations:

• **One Explanation:**

- For a set of thresholds from 0-100, identify the discriminative and non-discriminative parts. Perturb these parts of the test time series.
- If the explanation method is informative, the accuracy (measured by a referee classifier) drops more when the discriminative parts are perturbed.
- Method is informative when Type1 eLoss (eLoss₁) is less than Type2 eLoss (eLoss₂)

•
$$\Delta e Loss > 0$$
: $\Delta e Loss = e Loss_2 - e Loss_1$.

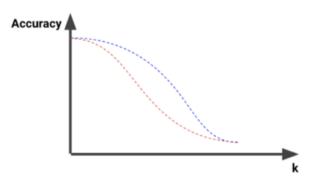


Figure: Change of accuracy when the test set is perturbed with a threshold k.

- Evaluating Explanations:
 - Multiple Explanations:
 - For set of thresholds from 0-100, identify only the discriminative parts. Perturb these parts of the test time series.
 - Most informative explanation leads to most accuracy drop (measured by a referee classifier), when the discriminative parts are perturbed.
 - Most informative method has lowest eLoss₁
 - Compare eLoss₁ of the methods under investigation

Datasets
Datasets

Table 2: Summary of TSC datasets used to evaluate explanation methods.

Dataset	Train Size	Test Size	Length	Type	No. Classes
CBF	30	900	128	Simulated	3
CMJ	419	179	500	Motion	3
Coffee	28	28	286	SPECTRO	2
ECG200	100	100	96	ECG	2
GunPoint	50	50	150	Motion	2

- Explanation Methods:
 - MrSEQL-SM
 - ResNet-CAM
 - MrSEQL-LIME

- Referee Classifiers:
 - MrSEQL
 - ROCKET
 - WEASEL

Evaluate Single Method:

- Type1 curve in red, Type2 curve in blue
- Each row shows an explanation method and the accuracy of 3 referee classifiers for different levels of Type1 and Type2 noise
- Explanation method is informative when the red curve is *below* the blue curve (loss in accuracy due to the explanation)

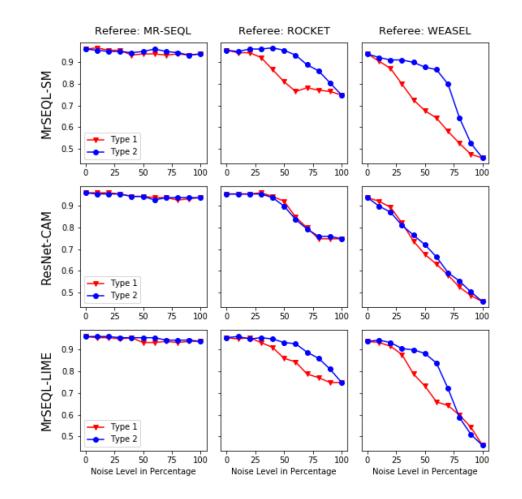


Fig. 7: Comparison of accuracy for Type 1 (red) and Type 2 (blue) perturbation for each explanation method and referee classifier for the CMJ dataset.

Evaluate Single Method:

Table 3: Summary of Δ_{eLoss} of three explanation methods on five different TSC problems. Positive values suggest the findings of the explanation method are informative according to the referee classifier. Negative values suggest otherwise.

	0						
Dataset	Explanation Method	Referee Classifier					
Dataset		Mr-SEQL	ROCKET	WEASEL			
CBF	MrSEQL-SM	0.0001	0.002	0.0126			
CDF	ResNet-CAM	-0.0005	0.0007	0.0141			
	MrSEQL-SM	0.0045	0.0709	0.1151			
CMJ	ResNet-CAM	-0.0006	-0.0028	0.0106			
	MrSEQL-LIME	0.0084	0.0475	0.0531			
Coffee	MrSEQL-SM	0.0286	0.0	0.0			
Conee	ResNet-CAM	0.0179	0.0	0.0143			
ECG200	MrSEQL-SM	0.033	-0.001	0.024			
ECG200	ResNet-CAM	-0.011	-0.003	0.038			
	MrSEQL-SM	0.0026	0.1373	0.0273			
GunPoint	ResNet-CAM	0.0067	0.0967	-0.002			
	MrSEQL-LIME	0.002	0.0714	0.0007			

Method is informative when ΔeLoss >0

Evaluate Multiple Methods:

 Most informative method has the lowest (most impacted) explanation curve plotted by accuracy of referee classifier

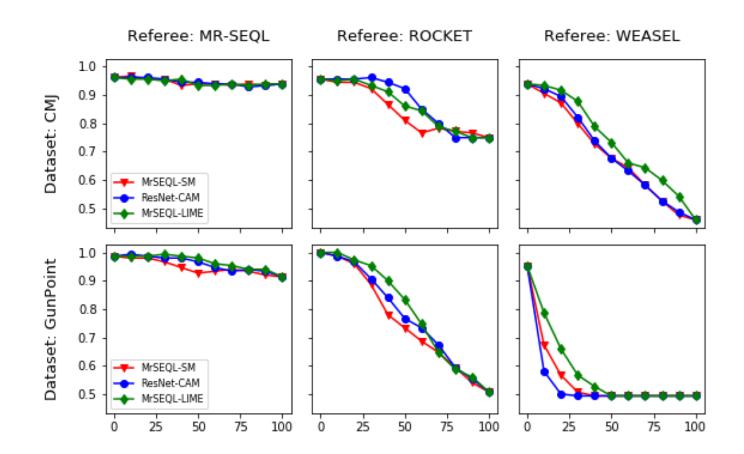


Fig. 8: Comparison of accuracy for *Type 1* perturbation based on three explanation methods (MrSEQL-SM, ResNet-CAM and Mr-SEQL-LIME) for GunPoint and CMJ datasets and three referee classifiers. Lower curve is better.

Evaluate Multiple Explanation Methods:

Table 4: Summary of $eLoss_1$ of three explanation methods on five different problems. Lower value (column-wise) suggests the explanation method is better in explaining the problem according to the referee classifier.

Dataset	Explanation Method	Referee Classifier				
Dataset	Explanation Method	Mr-SEQL	ROCKET	WEASEL		
CBF	MrSEQL-SM	0.9991	0.9941	0.6018		
CDF	ResNet-CAM	0.9993	0.9945	0.6041		
	MrSEQL-SM	0.9441	0.8422	0.6899		
CMJ	ResNet-CAM	0.9453	0.8735	0.6972		
CINIS	MrSEQL-LIME	0.9441	0.8612	0.7385		
Coffee	MrSEQL-SM	0.9625	1.0	0.9786		
Conee	ResNet-CAM	0.9696	1.0	0.9821		
ECG200	MrSEQL-SM	0.811	0.9065	0.7565		
ECG200	ResNet-CAM	0.838	0.9035	0.7385		
	MrSEQL-SM	0.9477	0.7567	0.543		
GunPoint	ResNet-CAM	0.961	0.7773	0.5257		
	MrSEQL-LIME	0.9677	0.7953	0.573		

Ireland raining earning

Sanity Check for Experiment Result

• MrSEQL-SM explanation is the most informative according to the quantitative estimation and also the qualitative sanity check. The qualitative result is confirmed by a domain expert in sports science.

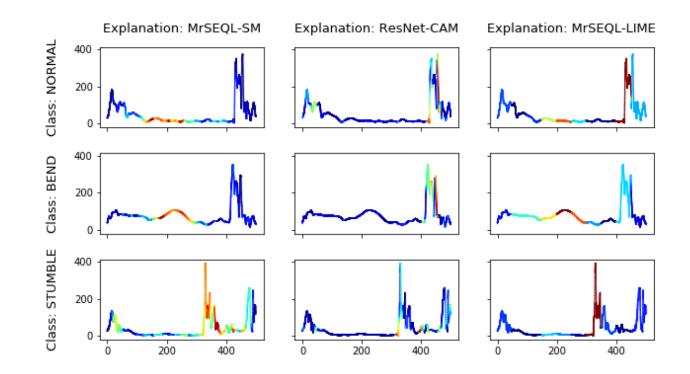


Fig. 9: Saliency maps produced by three explanation methods for example time series from the three classes of the CMJ dataset. 19

e Foundation Ireland or Research Training in Machine Learning

Conclusions

- It is possible to **quantitatively evaluate the informativeness** of explanation methods
 - **Key ingredients:** a set of explanation methods, explanation-driven perturbation, referee classifiers, explanation-driven loss in accuracy
 - The sanity check step (qualitative assessment) confirms the experiment result (quantitative assessment)
- Use cases
 - Our approach enables a user to assess an existing explanation method in the context of a given application or to evaluate different explanation methods and opt for one that works best for a specific use case.
 - Our method can be used to filter a set of potential explanation methods before conducting expensive user-studies.

Future Work

- Other perturbation approaches
 Gaussian noise vs. Centroid-based
- Other comparison benchmarks lower/upper bound on informativeness
 Compare Type 1-2 vs. Compare Type 1-Random SM
- Use more/diverse referee classifiers
 - Detangle the robustness to noise from impact of explanation
- Quantify other XAI properties in the context of TSC
 - \circ Coverage, stability, and more

Acknowledgements

This work was funded by Science Foundation Ireland through the SFI Centre for Research Training in Machine Learning (18/CRT/6183), the Insight Centre for Data Analytics (12/RC/2289 P2) and the VistaMilk SFI Research Centre (SFI/16/RC/3835).

Q&A

References

[1] Ribeiro, M.T., Singh, S., Guestrin, C.: "Why should I trust you?": Explaining the predictions of any classier. CoRR abs/1602.04938 (2016), <u>http://arxiv.org/abs/1602.04938</u>

[2] Le Nguyen, T., Gsponer, S., Ilie, I., O'Reilly, M., Ifrim, G.: Interpretable time series classification using linear models and multi-resolution multi-domain symbolic representations. Data Mining and Knowledge Discovery 33(4), 1183{1222 (Jul 2019). <u>https://doi.org/10.1007/s10618-019-00633-3</u>

[3] Zhou, B., Khosla, A., A., L., Oliva, A., Torralba, A.: Learning Deep Features for Discriminative Localization. CVPR (2016)

