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Introduction

e Time Series Classification (TSC)
o Prediction task common in many real-life applications, especially Human Activity

Recognition tasks; often requires explanation for the algorithm’s prediction

Landing Classes:
e Normal
e Bending
e Stumble
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Fig. 1: Saliency map explanations for a motion time series obtained using differ-
ent explanation methods. In this figure, the most discriminative parts are colored
in deep red and the most non-discriminative parts are colored in deep blue.

= Challenge: How to assess and objectively compare

TSC explanation methods?
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Related Work

e \We focus on quantitative assessment of explanations for TSC

e \We use saliency-based explanations produced by the following methods:

m MrSEQL-SM: Saliency Map computed from MrSEQL linear classifier
weights [2]

m CAM: Class Activation Map (explaining FCN/ResNet models)
3]

m LIME: Local Interpretable Model-Agnostic Explanations

(explaining any models) [1]
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Research Methods

e Key Concepts:
o Explanation as a Saliency Map: produced by matching a time series with a vector of
weights (explanation) using a heatmap — highlight the discriminative parts of the time series
o Referee Classifiers: independent TS classifiers to evaluate the explanation
o Explanation Informativeness: via explanation-based data perturbation, a more

Informative explanation can more effectively impact the referee classifiers predictions

— Key idea: If the explanation is informative, knocking-off (perturbing) the

discriminative parts of the time series leads to lower accuracy for the referee

classifier

Science Foundation Ireland
5 Centre f?r Resea.rch Traln!ng ML
in Machine Learning Labs




Research Methods

e Discriminative vs. Non-discriminative parts of the Time Series
o Each time series index has a corresponding saliency weight
o Discriminative/Non-discriminative parts: indices of the TS with weights in the
top/bottom k% of the entire weight profile.
m Example: with k = 20, discriminative parts are the parts of the TS in the top 20% of the weights

(index 5 and 6), non-discriminative parts are those that belong in the bottom 20% of the
weights (index 1 and 4). The perturbation threshold k varies, eg 0%, 10%, 20%,...,100%.

Normal Distribution Plot Example
mean = 5, stdev = 1.5

0.20 Index (O- 1 2 3 4 5 6 7 8 9 10

015 10)

0101 Area A Area B Weight 9 58 46 15 75 78 57 48 36 17
(in range

[0,100])
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Research Methods

e Explanation-driven Data Perturbation
o Typel: noise added to only discriminative parts (with different perturbation level k)
o Type2: noise added to only non-discriminative parts (with different perturbation level k)

e Perturbation: adding Gaussian noise to the original signal
Lperturbed = L +N(N’7 0'2)

If a time series is normalized, the distribution for the Gaussian noise would be
sampled from A(0, o1). The parameter o controls the magnitude of the noise.

Index 1 2 3 4 5 6 7 8 9 10
Weight 9 58 46 15 75 78 57 48 36 17
For k = 20,
we perturb X 224 420 465 222 257 405 383 439 350 450
20% of the
time series Xoerturbed (typel) 224 420 465 222 258 400 383 439 350 450
X 220 420 465 229 257 405 383 439 350 450

perturbed (type2)
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Research Methods

Quantifying the Informativeness of Explanation Methods
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Fig. 4: Process of creating explanation-driven perturbed test sets and evaluating
the explanation method using a referee classifier.
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Research Methods

Threshold for discriminative 0% 10%
weights
Classification accuracy by 0.90 0.85

referee classifier
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Research Methods

Quantifying the Informativeness of Explanation Methods

e Evaluation Measure
m Measure the impact of the accuracy reduction induced by different explanation methods
by estimating the area under the (explanation-driven) accuracy curve
m Method: use trapezoidal rule

m Proposed Metric: eLoss
t

1
eloss = 51@' Z(accz-_1 + acc;)
1=1
K - value of each step between the 0-1 range
t - number of steps (100/k)
acc - the accuracy at step i, measured by a referee classifier
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Research Methods

Quantifying the Informativeness of Explanation Methods
e Evaluation Measure

Accuracy vs Step
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Research Methods

e Evaluating Explanations:

o One Explanation:

m For a set of thresholds from 0-100, identify the
discriminative and non-discriminative parts. Perturb
these parts of the test time series.

m If the explanation method is informative, the accuracy
(measured by a referee classifier) drops more when
the discriminative parts are perturbed.

m Method is informative when Typel eLoss (eLoss,) is
less than Type2 eLoss (eLoss,)

a Aeloss >0 QeLoss = €Lossy —eLoss;.

12
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Figure: Change of accuracy
when the test set is perturbed
with a threshold k.
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Research Methods
e Evaluating Explanations:

o Multiple Explanations:
m For set of thresholds from 0-100, identify only the discriminative parts. Perturb these
parts of the test time series.
m Most informative explanation leads to most accuracy drop (measured by a referee
classifier), when the discriminative parts are perturbed.
Most informative method has lowest eLoss,
Compare eLoss, of the methods under investigation
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Experiments

e Datasets Table 2: Summary of TSC datasets used to evaluate explanation methods.
Dataset Train Size |[Test Size Length Type No. Classes
CBF 30 900 128 Simulated 3
CMJ 419 179 500 Motion 3
Coffee 28 28 286 SPECTRO 2
ECG200 100 100 96 ECG 2
GunPoint 50 50 150 Motion 2
e Explanation Methods: e Referee Classifiers:
o MrSEQL-SM o MrSEQL
o ResNet-CAM o ROCKET
o MrSEQL-LIME o WEASEL
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Experiments

Evaluate Single Method:

O

Typel curve in red, Type2 curve in
blue

Each row shows an explanation
method and the accuracy of 3
referee classifiers for different levels
of Typel and Type2 noise

Explanation method is informative
when the red curve is below the blue
curve (loss in accuracy due to the
explanation)
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Fig. 7: Comparison of accuracy for Type 1 (red) and Type 2 (blue) perturbation
for each explanation method and referee classifier for the CM.J dataset.
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Experiments

Evaluate Single Method:

Table 3: Summary of A.r,ss of three explanation methods on five different TSC
problems. Positive values suggest the findings of the explanation method are
informative according to the referee classifier. Negative values suggest otherwise.

Dataset |Explanation Method Referce Classifier
Mr-SEQL|ROCKET|WEASEL
CRBE MrSEQL-SM 0.0001 0.002 0.0126
ResNet-CAM -0.0005 | 0.0007 0.0141
MrSEQL-SM 0.0045 0.0709 0.1151 Method is informative
CMJ ResNet-CAM -0.0006 | -0.0028 | 0.0106 when AeLoss >0
MrSEQL-LIME 0.0084 0.0475 0.0531
Coffoo MrSEQL-SM 0.0286 0.0 0.0
ResNet-CAM 0.0179 0.0 0.0143
MrSEQL-SM 0.033 -0.001 0.024
BOG200 ResNet-CAM -0.011 | -0.003 0.038
MrSEQL-SM 0.0026 0.1373 0.0273
GunPoint ResNet-CAM 0.0067 0.0967 -0.002
MrSEQL-LIME 0.002 0.0714 0.0007
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Experiments

Referee: MR-SEQL Referee: ROCKET Referee: WEASEL
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Fig. 8: Comparison of accuracy for Type 1 perturbation based on three explana-
tion methods (MrSEQL-SM, ResNet-CAM and Mr-SEQL-LIME) for GunPoint

and CM.J datasets and three referee classifiers. Lower curve is better.
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Experiments

Evaluate Multiple Explanation Methods:

Table 4: Summary of eLoss; of three explanation methods on five different prob-
lems. Lower value (column-wise) suggests the explanation method is better in
explaining the problem according to the referee classifier.

Dataset |Explanation Method Referee Classifier
Mr-SEQL|ROCKET|{WEASEL
CBF MrSEQL-SM 0.9991 | 0.9941 | 0.6018
ResNet-CAM 0.9993 00,9945 0.6041
MrSEQL-SM 0.9441 || 0.8422 | 0.6899
CMJ ResNet-CAM 0.9453 0.8735 0.6972
MrSEQL-LIME 0.9441 0.8612 0.7385
MrSEQL-SM 0.9625 1.0 0.9786
Coftee
ResNet-CAM 0.9696 1.0 0.9821
MrSEQL-SM 0.811 0.9065 0.7565
RCG200 ResNet-CAM 0.838 0.9035 | 0.7385
MrSEQL-SM 0.9477 | 0.7567 0.543
GunPoint ResNet-CAM 0.961 0.7773 0.5257
MrSEQL-LIME | 0.9677 | 0.7953 | 0.573 Ireland
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Experiments

Sanity Check for Experiment Result

e MrSEQL-SM explanation is the most informative according to the quantitative estimation and also the
gualitative sanity check. The qualitative result is confirmed by a domain expert in sports science.

Explanation: MrSEQL-SM Explanation: ResNet-CAM Explanation: MrSEQL-LIME
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Fig.9: Saliency maps produced by three explanation methods for example time
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Conclusions

e Itis possible to quantitatively evaluate the informativeness of

explanation methods

o Key ingredients: a set of explanation methods, explanation-driven perturbation, referee
classifiers, explanation-driven loss in accuracy

o The sanity check step (qualitative assessment) confirms the experiment result (quantitative
assessment)

e Use cases

o Our approach enables a user to assess an existing explanation method in the context of a given
application or to evaluate different explanation methods and opt for one that works best for a
specific use case.

o Our method can be used to filter a set of potential explanation methods before conducting
expensive user-studies.
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Future Work

e Other perturbation approaches
o Gaussian noise vs. Centroid-based

e Other comparison benchmarks - lower/upper bound on informativeness
o Compare Type 1-2 vs. Compare Type 1-Random SM

e Use more/diverse referee classifiers
o Detangle the robustness to noise from impact of explanation

e Quantify other XAl properties in the context of TSC
o Coverage, stability, and more
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