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Introduction

The last decade witnesses the enormous integration and impact of machine
learning into everyday life. Machine learning algorithms nowadays work stunningly
well and grow superficially complex with models of millions parameters [1, 2]. How-
ever, we are far behind in explaining why these algorithms often work so well and
occasionally fail to perform [3].

This unmatched growth of complexity and explainability of many machine learn-
ing algorithms, including those dealing with time series data, undermines applica-
tion of the technology in critical, human-related areas such as medicine, healthcare,
and finance [4]. As sequential, time series data is prevalent in these applications
[6—7], Time Series Classification algorithms often call for reliable algorithm explana-
tions [8, 9]. This explanation is usually presented in the form of a saliency map [10],
highlighting the parts of the time series which are informative for the classification
decision.

Recent efforts both in designing intrinsically explainable machine learning algo-
rithms, as well as building post-hoc methods explaining black-box algorithms, have
gained significant attention [11-15]; yet, these efforts present us a new challenge:
How to assess and objectively compare such methods? In other words, if two ex-
planation techniques give different explanations, i.e., two different saliency maps,
which technique and explanation should we trust?

Assessing and comparing explanations is a non-trivial problem, requiring an
effective and scalable method to filter out problematic techniques and to identify
trustworthy ones. This assessment helps alleviate the need for, or at least reduce
some of the effort required to, conducting user-studies which are very difficult to
reproduce [4]. Identification of useful explanation techniques for a specific type of
problem not only enables machine learning to make impact in critical application
areas, but also pinpoints the potential problems, such as biases, that may exist
in the training data [16]. More importantly, this evaluation further empower ma-
chine learning to discover new knowledge from the data. Often times, that piece
of insights is even more important than the model correct decisions. For example,
given a complex, sequential gene database of people with and without auto-immune
diseases, it is interesting to know which part of the gene might associate with this
specific condition. The knowledge enables identification of high-risk group of people
and recommendation of suitable diets and lifestyles that prevent the symptoms to
develop and help these people have better life quality.

I specifically seek to understand and finding solutions to the problem of identi-
fying legible explanations (in the form of saliency maps [10]) to machine learning
algorithms, including time series classiﬁc%tion algorithms.



o Given a time series classification task and a dataset, how can we evaluate if a
given explanation method is useful? How can we quantitatively compare differ-
ent explanations? What metrics should be used to quantify the informativeness
of explanation methods?

o What are good explanation methods for a specific type of datasets? How robust
are these methods when noises are present?

e How to design an optimized explanation method based on the proposed evalu-
ation framework?

My response to these research questions is: 1) to develop approaches to automati-
cally and computationally assess the quality of explanation methods for Time Series
Classification (TSC), and 2) to devise metrics to quantify such assessments.

Current Research

My work focuses on quality assessment of explanation methods using explanation-
driven perturbation. As a good saliency-based TSC explanation highlights the dis-
criminative parts of the time series, perturbation of these parts will remove critical,
class-specific information of the data and make it harder for machine learning mod-
els to make correct prediction.

Step-wise Explanation-based Perturbation. A saliency-based time series ex-
planation can either be presented as a heatmap or a non-negative numeric vector
(w) that contains the importance weight of each time step. As a result, discrimi-
native parts are identified by a threshold k& (0 < k < 100) that represents the top
k-percent of w. Varying this threshold k allows step-wise explanation-based pertur-
bation of data, i.e. step-wise replacement of most important parts with noises.

A Model-Agnostic Framework to Comparing Explanations. When multi-
ple explanation methods are available, application users naturally raise a question:
What method should I trust? My proposal to answer this question based on the idea
that good explanations highlights informative, critical parts of the data; thus, mak-
ing changes to such parts will reduce accuracy of an independent classifier more than
those based on other parts. In other words, perturbation of data based on a good ex-
planation will affect the independent classifier most significantly. Our work presents
a framework that first builds a time series classifier using the original, non-perturbed
training data. This classifier serves as the evaluation classifier for the explanation
methods in question, i.e. a referee classifier. Fach explanation method is evaluated
independently in the following step, in which the explanation-in-assessment is used
to generate perturbed/noisy datasets. Each dataset corresponds to a value of the
threshold k£ (0 < k < 100). Using the referee classifier, we measure the accuracy in
each perturbed datasets and compare the magnitude of accuracy reduction at each
step. Best explanations generally experience huge accuracy drops at the first few
steps, while others have marginal changei.



The intuition of this process is similar to have an independent referee to judge
whether one explanation is making more sense than others. In that fashion, it is
possible to invite multiple referees, i.e. using multiple referee classifiers, to assess
performance of the explanation methods that are evaluated.

Extension of this framework covers the situation when only one explanation
method is available. Two possible options of assessing explanation quality in this
case are to compare the method in question with 1) its reverse one, where the most
salient region of one is the least salient region of the other; or 2) a random one, in
which the salient region is determined randomly.

Informativeness of An Explanation: An Evaluation Metrics. We quantify
the informativeness of an explanation using the relationship between the accuracy of
a referee classifier on test datasets perturbed at different threshold k. The impact of
the explanation methods is estimated using the area under the (explanation) curve
described by accuracy at each step k (0 < k < 100), using the trapezoidal rule.
We call this metric Explanation-AUC. A better explanation method should have
a lower Explanation-AUC than other methods. Ranking of this metric represents
ranking of explanation quality [17].

My collaborators and I have demonstrate that our proposed approach, using
step-wise explanation-based perturbation to create a model independent frame-
work to quantitatively compare and evaluate explanation methods by calculating
Explanation-AUC, can correctly point out a legible explanation which is confirmed
by a domain-expert in a human activity recognition dataset [18]. Our work provides
a ready-to-use recipe that is compatible with any referee classifiers and saliency-
based interpretations, including machine-generated and expert-based explanations,
a resulted explanation method that is useful in detecting data and model potential
biases, and a tool to automate insights learning from data.

Important questions remain. While we are continuously improve the proposed
algorithms (that we already have work in progress) to handling different pertubation
types, involving more independent referee classifiers, and testing with different types
of time series data, we are still in search for a final design of an optimized explanation
method based on our proposed framework, and an recommendation of strengths and
limitations of each commonly used explanation methods [11-15]. That results would
almost certainly shed new light to many applications, from healthcare, medicine,
finance, to any areas that involves sequential data.

Future Directions

Optimized Saliency-based Explanation Method. The notion of informative-
ness and the proposed framework to evaluate explanation methods help identify
the most informative method out of many available explanation techniques. The fi-
nal, long term aim of my research is to design a new, optimized explanation method
that maximizes the informativeness metric (Explanation-AUC) using our evaluation
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framework. One potential option is to look into an iterative process for tweaking
one explanation to optimize informativeness metric.

Learning New Knowledge from Data. Explanations are often thought of as
a way to confirm existing knowledge about the data. Yet, there are situations
which humans have little knowledge of grouth-truth ezplanations, for example sub-
sequences of gene/DNA /protein chains that are responsible for specific conditions.
Our research aims to perform a demonstration of this application, in which we use
optimized explanation to find out insights from data that was previously unknown
to us. The result would be presented to a domain expert to verify correctness.
We believe that this demonstration will show an powerful use-case of Explainable
Machine Learning beyond confirming algorithm’s inner workings and fairness.
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